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Rigorous Full-Wave Space-Domain Solution
for Dispersive Microstrip Lines

NIELS FACHE AND DANIEL DE ZUTTER

Abstract —The eigenmode problem for the open microstrip line is

analyzed in the space domain starting from the calculation of a dyadic

Green’s function in the spectral domain. Tbe transverse and the longitndi-

md current are discretized using the method of moments. A point-matching

teehnique is used to impose the boundary condition, i.e., zero tangential

electric field, on the strip. The edge conditions at the end points of the

strip are explicitly incorporated and special care is taken to accurately

retain the static behavior of the fields on and near the strip. Speciaf

attention is devoted to the variation of the current distribution as a

fuuctiou of frequency,

I. INTRODUCTION

T HE DISPERSION characteristics and the (lowest)

eigenmode(s) propagating along an open microstrip

line have been analyzed by a large number of authors. We

refer the reader to [1]–[10] for a review of the various

approaches and results. The spectral-domain approach

proposed in [1] and [2] was recently applied by Kobayashi

and Ando [6] to determine the frequency dependence of

the effective dielectric constant starting from a closed-form

expression for the transverse and the longitudinal current

distribution on the strip. These expressions take the edge

conditions into account.

In the spectral-domain approach proposed by [1], the

boundary conditions on the strip, i.e., the vanishing

tangential electric and normal magnetic field, are only

satisfied at a single point at the center of the strip. In more

recent publications using the spectral-domain approach

[2]-[10], either a more accurate closed-form representation

of the current or a representation of the current using a

larger number of basis functions is introduced. In these

cases the boundary conditions are imposed in some global

sense.

In the present paper a full-wave solution is proposed in

the space domain starting from the calculation of a dyadic

Green’s function in the spectral domain. Both the trans-

verse and the longitudinal current are discretized using the

method of moments in such a way that the edge conditions

are satisfied. The boundary conditions on the strip are no

longer imposed in a global sense but at a number of points

equally spaced along the strip. In addition, by explicitly
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satisfying the boundary conditions at the end points of the

strip, the static behavior of the fields on and near the strip

is accurately retained in our approach. As we do not start

from a closed-form expression of the current on the strip,

as in [6], it becomes possible to examine the influence of

the frequency on the current distribution. Another consid-

erable advantage of the proposed method is the fact that it

can be extended to study the coupling between two or

more microstrip lines. As the dyadic Green’s function is

found in the spectral domain, the method is suited to

coupling between lines in the same horizontal plane, as

well as to lines at different depths in a multilayered

structure. In the latter case it is essential to include enough

degrees of freedom in the representation of the current

distribution.

II. GENERAL FORMULATION

The structure under consideration is shown in Fig. 1.

The ground plane at z = O is perfectly conducting and the

microstrip substrate (medium 1) with thickness d consists

of a lossless, nonmagnetic material with relative permittiv-

ity c,, The strip is infinitely thin and perfectly conducting,

with width 2 w (– w < y < + w). The medium above the

strip is air (medium 2).

As we want to determine the lowest eigenmode propa-

gating along the microstrip line, all field components de-

pend upon x through the common phase factor

exp ( – j~x ), where D represents the propagation constant

of the eigenmode. The time dependence exp ( @ ) is sup-

pressed. For the calculation of the electromagnetic fields

excited by the eigenmode, we start from the surface cur-

rent density on the strip:

~.(x!Y)=Jx(J’’)e-~@x
–W<y<+w.

jy(x, y)= Jy(y)e-jBx
(1)

The electric field generated by these surface currents eve-

rywhere in space can be found with the help of a suitable

Green’s dyadic ~:

E(y, z) = [W ~(~,Z; y’, z’== d,/l). J(y’)dy’. (2)
.—w

The actual electric field is e = exp ( – j~x)~. The coordi-

nates z and y are the coordinates of an observation point

outside the strip and y’ stands for the coordinate of a

variable integration point along the strip. As the surface

current density J is as yet unknown, J can be found by
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Fig. 1. Perfectly conducting microstrip line on a dielectric substrate.

expressing the fact that the tangential component of the

electric field E given by (2) must vanish on the strip itself.

This leads to the following integral equation:

J(lim w =, y,z; y’, z’= d,p)”J(.Y’) dy’= o. (3)
z+d ‘W

The observation point is now_restricted to the strip, where

z ~ d and – ~ < y < + w. ~t represents this part of ~

which yields the tangential x and y components of E. The

above integral equation constitutes an eigenvalue problem.

The propagation constant ~ is the eigenvalue of the prob-

lem and the current OR the strip forms the associated

eigenvector. The kernel G* depends upon the eigenvalue ~.

As will be shown below, it is essential to retain the limit
z -+ d. A mere interchange of this limit with the integration

over y‘ is not always allowed.

111. DISCRETIZATION OF THE SURFACE CURRENT

For the solution of (3) we use the method of moments

combined with a point-matching technique. The strip is

divided into N identical intervals with width A (see Fig.

2). The modeling in the intervals 2 to N – 1 is based on a

superposition of elementary triangular functions which

extend over two intervals. This leads to a piecewise-linear

representation of both the longitudinal and the transverse

current. In the outermost intervals 1 and N, our represen-

tation explicitly accounts for the behavior of the electro-

magnetic fields near the edges. This behavior has been

analyzed by Meixner [11] and imposes the following form

for the longitudinal current:

~y= Ar-l/z+ B71/Z+ c~glz+ 0(75/z) (4)

where ~ represents the distance to the edge. This compo-

nent of the current becomes infinite at the edge. The

transversal component remains finite:

Jy = B’~1z2 + C’~3i2 + 0(~5/2). (5)

In our discretization of the current we restrict the series

(4) to the first three terms and the series (5) to the first two

terms. To ensure continuity of the current along the strip

and to incorporate the behavior near the edges, the current

representation in the intervals 1 and 2 is supplemented by

the superposition of the modified triangular functions
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Fig. 2. Longitudinal current Jr and transversal current jJp as a super-

position of elementay basis functions.

L(Y)> ~2(Y)7 and f3(Y) for the longitudinal comPonent
and tz( y) and ts ( y) for the transverse component:

tl(T) = (A/~)1’2

tz(~) = (~/’A)l’2

t3(~) = (~/A)3’2

for 0<~< Aand

(6)

tl(~) =t2(~) =t~(~) = (2A–7)/A

for A < T < 2A, where r = w – Iyl at both edges.

An analogous approach is implemented near the other

edge. Fig. 2 shows the basis functions and their superposi-

tion for the longitudinal current JX( y) at the left-hand

part of the figure and for the transverse current Jy(y) at

the right hand. As shown below, both components are in

quadrature. The total number of scalar unknowns intro-

duced in the way outlined above is 2N + 4. To determine

these unknowns we require the integral equation (3) to be

satisfied in N + 2 points, These N + 2 sample points are

chosen to be in the center of each interval and at the edges

of the strip.

The above approach allows us to reduce the original

integral equation to the discrete matrix problem:

[A][.J] = [0]. (7)

The square matrix [A] has (2N + 4) x (2N + 4) elements

and the column vector [J] contains the unknowns which

model the surface current. The eigenmode calculation is

now reduced to the determination of the eigenvalue ~ for

which det [ A] becomes zero. The corresponding eigenvec-

tor [J] is found by satisfying the 2 N + 4 linear equations

in (7) using a least-squares technique.

IV. GREEN’S DYADIC IN THE FOURIER DOMAIN

As a first step we introduce the Fourier transformation

of all fields with respect to the y coordinate. The Fourier

transformation and its inverse are defined as follows:

F(ky) = (1/2m)~+mf(y)exp(j~y~)d~
—m

f(Y) =f+m~(~.v)exP(- ~~.”Y)d~.”- (8)
—m

As there is no danger for confusion, we have not intro-

duced a special symbol to indicate the Fourier transforma-
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tion. A function and its transformation are only dis- The constants A’, B’ and A“, B“ must be determined by

tinguished by their arguments. It is easy to see from applying the boundary conditions between the layers of
Maxwell’s equations that the transformed fields in medium the medium. The continuity of the tangential electric field
1 and 2 satisfy between substrate and air leads to

d2E
—–1’2E=0
dz 2

E{– E~=O

Ey–E~’=0
for z = d. (14)

d 2H The tangential magnetic field exhibits a jump at the strip.
—–~2H=0

(9) The appropriate boundary condition isdz 2

with 1’2 = /32 + k; – k~N2. Here k. = ti/c is the wave- H& H~=-J’’(kY)

number, N = & for medium 1, and N = 1 for medium 2. forz=d
Hi’ – H;=+ Y(kY)

(15)

r itself is defined as the root of r2 with nonnegative real

or imaginary part. The general solution of (9) is given by where Y( k ~) = .lX(kY )UX + JY( kY ),uY represents the Four-

E(z, kY,13)= Aexp(-Fz)+Bexp(rz) ier-transformed surface current density J(y) (3). Ad-

ditional boundary conditions are #ven by the fact that E’
H(z, kp, B)= Kexp(–rz) +Lexp(rz). (10) and E“ are zero at the perfectly conducting ground plane,

The vectors K and L are not independent of A and B.

The relation between them will be established below.

As a second and essential step we introduce the projec-

tion of every vector on three orthogonal directions. An

arbitrary vector W is characterized by the three numbers

W=, W’, and W“ as follows:

W= Wzuz+[W’k +W’’’(u2x k)(/’(/32+ k;)

k = /htx + kyuy and k2 =/?2+ k:. (11)

It is clear that the corresponding values E’, E“, E,, H’,

H“, and H, are of the form (10) but with the vectors

replaced by scalars. With the notation introduced above,

Maxwell’s divergence equations reduce to dEZ/dz = JE’

and to dHz /dz = jli’. The rotor equations projected on

the z axis yield the relations E“ = OPOHZ and H“ =
— uc OC,Ez. Taking the above results and considerations

into account, we finally arrive at the following representa-

tion of the fields in each layer:

Ef(z, kY, ~)= A’exp(– rz)+B’exp(rz)

H“(z,k Y,ll) = (j~co~r/r)[A’exp (–rz)– B’exp(rz)]

Ez(z,k,,fl) = (- j/I’) [A’exp(- rz)-B’exp(rz)]

(12)

and

E“(z,k Y,~)=A’’exp( -rz)+B’’exp(rz)

H’(z, ky, fl) = [r/(–j@Po)]

.[A’’exp(- rz)-B’’exp(z)])]

i.e., for z = O; hence Al + B{ = O and Al’ + B{’ = O. Fi~

nally, in medium 2, only outgoing waves can exist. This

implies B; = O and B;’ = O. After some manipulations we

arrive at the following result for ~t(kY, z) (3) for an

arbitrarily oriented surface current element located at y =
Yl:

GtXX=(a/32 +bk~)exp [- 1’2(z-d)] exp(jkYy’)/k2

G txy = G,yX

=(a-b)kY13exp [- 1’2(z-- d)]exp(jkYy’)/k2

G,yy = (akf + b132)exp [– r2(z –d)] exp( .jkyy’)/k2

(16)

with

– r1r2 sinh (rld)

a = jOtO[rlsinh(rld) + frr2c0sh(r1d~

–jtipOsinh(rld)

b= [172sinh(rld)+ rlcosh(rld)] “
(17)

171 and 172 are defined in (9). Strictly speaking, (16) and

(17) are only valid for z > d. For the integral equation (3)

we actually need the limit z -+ d in (16).

V. GREEN’S DYADIC IN THE SPACE DOMAIN
—

To find G,( y, z) in the space domain, t>e inverse Four-

ier transformations of the elements of ~t(ky, z) in (16)

must be determined. This calculation reduces to the de-

termination of six Fourier integrals which can be taken

together into two classes:

HZ(Z, ky,fl) = (l/upo)[A’’exp(– rz)+ B“exp(rz)l. +~r’lr’,kjexp[- rz(i?-d)-jky~]

(13) (j/”’o)j_@ [rl+ ,,r2coth(r1d)](~2 + kf~dk’ ’18)

As shown by (12) and (13), this representation of the fields and

falls apart into two sets of decoupled equations: one set

for E’, H“, and E= and a second set for E“, H’, and Hz.

J

+~ kjexp[-1’2(z--d) -jky8]

The first set is a TM mode as the z component of the – jupO
[r2+r1c0th(r1d) ](~2+ k;) ‘k’” ’19)

magnetic field is zero. The second set is a TE mode. The
—m

couples ( E‘, H“) and ( E“, H’) can be used to define The notation 8 = y – y’ stands for the distance between

equivalent voltage and current across a transmission line. the observation point and the scurce point on the strip.
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Fig. 3. Integration path, singularities, and branch cuts in the complex

k, plane.

The superscript i, indicating a power of kY, takes the

values O, 1, and 2. From (16) and (17) it can be seen that

GtXX(kY) and G,Y,(kY) are even with respect to kY while

G,.YY(kY) = GtYX(kY) IS odd and that the coefficients a and
b (17) take an imaginary value. Consequently G,XX(y – y’)

and GtYP(y – y’) are even with respect to S, and G,XY(y –

y’) is odd, while .JX(y) will be even with respect to y and

{, will be odd. Moreover, JX(y) and JY(y) are in quadra-

ture.

At this point it is justified to interchange the limit z -+ d

with the integration over y’ in (3) on the explicit condition

that the above integrals (18) and (19) remain bounded for

z = d. This is not the case when the source and the

observation point coincide, i.e., for 8 = O or y = y’. The

approach followed in that particular case, i.e., for the

self-patch calculations, is discussed in the next section. In

the present section we now assume z = d in (16), (18), and

(19).

The integrals (18) and (19) for i =1,2 can be derived

from those for i = O by taking, respectively, the first and

second derivative with respect to & Hence, the discussion

will be restricted to the case i = O. Fig. 3 shows the

integration path along the real kY axis. The poles are

excluded in such a way as to satisfy the appropriate

causality conditions [12]. As indicated on Fig. 3, the in-

tegration path from – m to + m is divided into three

intervals: [– m, – kc], [– kc, + kc], and [+ kc, + co]. The

value of kC is chosen such that 171 and rz can be ap-

proximated by Ik, I while ~ 2 + k; can be replaced by k: in

the first and third intervals. This implies that the contribu-

tions to (18) and (19) coming from [ – co, – k,] and from
[+ kc, o] can be taken together. The contribution to (18)

fori=Oandz=dis

– 4 jer

[.i

+~ exp (–2kYd – ~k.,~)
~ Re

06.(1+ 6,) ~C [1+ Kexp(–2k,d)] k, ‘k’ 1
+m cos(kY8) dk

+ %:+ 6,) lC k, ‘
(20)

where K = (t. – 1)/((, + 1). The contribution to (19) for

i = O and z = d becomes

J–jupo ~ ‘~cos~) [1–exp(–2k}d)] dk,. (21)

. Y

A typical value for kC is 10x k. x c.. The integrations in

(20) and (21) no longer depend upon ~. Hence, in spite of

the iterative method used to determine the value of ~

which satisfies det [ A] = O in (7), the integrations involved

in that iterative process stemming from (20) and (21) must

be performed only once. This is a considerable advantage

of the proposed method. The contribution (21) can be

found analytically. The result is

-(~~p~/2k~)([cos( k#)-kC8sin(kC6)

+(kC8)2ci(lkC81)]

- [cos(kCi3) -2kCdcos(kC8)

- kC8sin(kC8)] exp(-2kCd))

+ jupO/2Re[(-2d+ j8)2131(2kcd - jkC8)]

(22)

where ci denotes the cosine integral and El the exponen-

tial integral [13]. The contribution (20) has been written as

the sum of two integrals in such a way that the second

integral contains the dominant behavior for y -+ y’ (8 ~ O).

This second integral can be found analytically:

– j2ci(lkcal)\[~co(l+ c,)]. (23)

Consequently, the first class of integrals (18) has a loga-

rithmic singularity in Iy – y’] for i = O. This implies a

l/ly – y’1 singularity for i =1 and a l/ly – Y’12 singular-

ity for i = 2. The second class (19) only exhibits a logarith-

mic singularity for i = 2.

The first integral in (20) must be calculated numerically.

Because of strong oscillation of the integrand, the integra-

tion path is deformed to a suitable straight line in the

complex kY plane as shown on the right of Fig. 3:

kY=r+j(~- kc)8/(2d), kC<~<m. (24)

The angle a on Fig. 3 is defined by tan(a)= 8/2d. The

path is chosen such that the phase factor exp ( – 2kYd +

jkY8) in the integrand decays exponentially along the path,

reducing most of the oscillation of that integrand along the

original path. The actual numerical integration is based on

the Gauss–Laguerre quadrature.

Finally, we have to deal with the integrals over the

interval [ – kC, + kC]. Due to the resonant modes of the

structure, the integrands for the first class of integrals (18)

exhibit a finite number of poles in this interval. As medium
1 and medium 2 are both nonmagnetic, this is not the case

for the second class (19). The poles are indicated on Fig. 3

together with the branch cuts necessary to define the

values of 171and r2. To avoid the singularities, the.original

integration path [ – kc, + kc] along the real kP axis is

replaced by a new one consisting of a straight line through

the origin together with two arcs (see Fig. 3). The angle 0,

which in principle takes an arbitrary value, is chosen such

that the amplitude variation of the integrand remains small

enough to ensure the accuracy of the numerical integra-

tion. The integration from – kC to + kC for the second

class (19) takes place along the real axis. In both cases
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simple Gaussian quadrature is used except when c/

(2fi&) <1 (c: velocity of light in vacuum, ~: frequency).

In the latter case a Filon quadrature is more appropriate.

For sufficiently low frequencies the exponential factor

exp ( – jkY8) in the integrals over [ – kc, + kc] can be

expanded in a power series in kY& As a consequence of

this expansion the integrals we are searching for cap be

approximated by polynomials in 8, the coefficients of

which are integrals which still depend on ~ but not on &

As we need these integrals for a whole range of ~ values,

this approach considerably reduces the calculation effort.

In the example considered in the section on numerical

results, the series expansion approach yields correct results

up to 100 MHz.

VI. SELF-PATCH CONTRIBUTION

If we consider a specific point-matching point y, the

self-patch contribution to (3) is the contribution coming

from the integration over the interval A to which y be-

longs. In that particular case interchanging the limit z + d

iri (3) with the integration over y‘ is not allowed as it leads

to divergent results. At this point we will not go into the

details of the calculations. The approach that must be

followed will be illustrated by determining the self-patch

contributions for the point-matching point y placed at one

of the edges of the strip. We start from (18) and (19) but

retain the limit z ~ d in the integration over [ – m, – kC]

and [ + k=, co]. One can show that this is not necessary for

the integration over [ – k,, + kC] as the integrand has a

regular behavior for z = d. Hence, this part of the contri-

bution can be treated as explained in the preceding sec-

tion. Self-patch contributions to the matrix [A] in (7) for

y = – w and coming from the integration of GfXYJY and of

G,XXJX in (3) remain finite if z ~ d. We focus our attention

on those contributions which become infinite. The nonreg-

ular behavior of the integral in the left-hand member of (3)

for z ~ d and ‘for y = – w comes from

:~d/::+A[Gty.(Y =-W>Z: y’,z’=d,P)Jx(y’)

+G,YY(y= – W,Z; y’, z’=d, fl)JY(y’)] dy’. (25)

The current JX is built up as a superposition of functions

proportional to tl, t2, and t3 (6), and JY is built up as a

superposition of functions proportional to t ~ and t ~. A

detailed analysis shows that the nonregularity comes only

from tl in the case of JX and from t2 in the case of JY.

From (16) it can be seen that G,YX and G,YY consist of two

parts: a first part proportional to the coefficient a (17)

being the TM part, and a second part proportional tci the

coefficient b (17) being the TE part. Only the TM part is

responsible for the nonregularity in (25). This is due to the

fact that the TM part of Gt ~X becomes a nonzero constant

for kY - m and that the T-M part of G,YY is proportional

to k for large values of kY, while the TE part vanishes as
l/k~ in the case of G,YX and as l/kj in the case of GrYY.

In the sequel we disregard the TE contributions. The first

term in (25) for YX= Atl and for the TM part of G,YX leads

.exp(– kYlz – dl) dk,,

—— ‘jK~X@l[772 ‘1/’12 – all-l/’]

-2cos(kcA)(A)-]/2

-2(2rkC)112S(kCA)) (26)

while the second one for JY = B’t2 and for the TM part of

G,YY gives

lim ~AB’(yf)112dy’~ +w(-)Kkj,cos(kYy’)
z-d (J kc

.exp(– kYlz – dt) dkY

—— (– MB’ ~+md[– 7r2-3/21z –all-1/2]

+2cos(kCA)(A)-1’2+ (2~kC)1’2S(kCA)). (27)

In both (26) and (27) S(kcA) represents the Fresnel sine

integral of argument kCA [13]. The coefficients ~ in (26)

and (27) is given by ~ = 2/[@0 (1 + c.)]. The coefficient

A in (26) is the same as in (4). As u ~ O, A remains

constant and the ratio ~/u in BK takes a constant nonzero

value. On the other hand, B’ in (27) is the same as in (5).

As u ~ O, B’ must also vanish because no transversal

current is found on the strip for u = O. However, the

product uB’ in (27) takes a constant nonzero. value fo~
Q -+ O, The above considerations show that the self-patch

contributions in (26) and (27) still differ from zero for

Q = O and that their correct evaluation leads to the correct

static behavior of the lowest eigenrnode and associated

eigenvalue /3. Although the tangential electric field is zero

everywhere on the strip, i.e., for z = d, this is not the case

just below or just above the, strip. Both the longitudinal

current and the transversal current give rise to an’ electric

field component which in fact becomes infinite just above

the edges of the strip as required by Meixner’s edge

condition. For the actual self-patch contributions the terms

in Iz – d 1– 1/2 in (26) and (27) must be dropped. These

nonregular parts correspond to the static field in the

neighborhood of the edge of the strip. The remaining

contributions are regular.

VII. NUMERICAL RESULTS -

The main interest of this paper lies in the presentation

of a new approach for the solution of the eigenproblem for

the microstrip line. Consequently, we restrict the numerical

results presented in this section to a typical configuration

which can be found in several publications [1]–[3], [6]. In

this configuration the relevant parameters take the values

2W = 3.04 mm, d = 3.17 mm, and c.= 11.7. Fig. 4 shows

the value of the effective dielectric constant (c,) ,ff =

(D/k)2 as a function of frequency f = u/2v and this up

to 15 GHz. We have compared this result with the one
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Fig. 4. Effective dielectric constant as a function of frequency for the

configuration of Fig. 1 with 2 w = 3.04 mm, d = 3.17 mm, and c, =11.7.
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o.05-
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. . .
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Fig. 5. Longitudinal current JX at 1 GHz and 13 GHz, relevant to the

example of Fig. L

obtained by Kobayashi et al, [6] with the spectral-domain
method based on an a priori form of the longitudinal and

the transverse current. Both results differ less than 1

percent up to 10 GHz, which is the highest frequency

considered in [6]. The reader is referred to the paper by

Kobayashi et al. for a detailed comparison of their results

with the ones obtained by other authors. The numerical

results shown in Fig. 4 (with an accuracy of 0.1 percent)

were obtained by a division of the strip into 10 intervals.

The longitudinal current and the transversal current on

the strip are shown in Figs. 5 and 6, respectively. As the

longitudinal current is symmetric with respect to the center

of the strip’ and as the transversal current is antisymmetric,

‘Aim

lGHz

\

7GHZ

d
-ii -U;2 i

Fig. 6. Transversal current j<, at 1 GHz, 7 GHz, and 13 GHz relevant
to the example of Fig. 1.

we display only the results for the left half of the strip. The

transverse current increases with increasing frequency.

However, at 13 GHz it still remains two orders of magni-

tude smaller than the longitudinal current. JX and J, are

in quadrature. As the amplitude of the transverse current

changes more rapidly as a function of frequency than the

longitudinal current, JY is plotted for three different fre-

quencies while JX is depicted for only two frequencies. The

total longitudinal current, i.e., the integral of JX over the

width of the strip, is kept constant for each frequency. The

result for 13 GHz in Fig. 5 shows a kind of skin effect. As

the frequency increases, the longitudinal current tends to

be constant over a larger portion of the strip, as would be

the case for an infinite strip, and the singular behavior

becomes more and more restricted to the immediate

neighborhood of the edges. The results of Figs. 5 and 6

clearly exhibit the ability of our method to allow for a

variation of the current profile as a function of frequency.

The dispersion characteristic of Fig. 4 changes only

marginally if the number of divisions on the” strip is

increased beyond 10. For the current profiles, however, at

least 30 divisions are necessary to obtain a converging

result.

VIII. CONCLUSIONS

We have shown that a rigorous full-wave space-domain

solution for a dispersive microstrip line offers an alterna-
tive to the spectral-domain method. This solution also

starts from the spectral domain for the calculation of an

appropriate dyadic Green’s function. Explicit inversion of

this Green’s dyadic leads to the Green’s dyadic in the

space domain. This dyadic is used as the kernel of an

integral equation for the vanishing tangential electric field

on the strip. The integral equation itself was solved using

the method of moments and a point-matching technique.

The analysis of the problem shows that it is possible to

incorporate Meixner’s edge conditions at the end points of

the strip. Moreover, it is shown that by incorporating these

edge conditions and by explicitly satisfying the integral
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equqti~n at the end points, the correct low-frequency and. .
static behavior of all field quantities is ensured. A consid-

erable advantage of the method lies in the fact that no

prior knowledge of the current density on the strip is

necessary. This makes the method suitable for analy~ng

multistrip configurations. The analysis and numerical data

concerning multilayered and/or multistrip configurations

will be presented in a forthcoming paper. The numerical

results given irt this- paper illustrate the capability of the

method to calculate the dispersion characteristics of a

single microstrip line up to very high frequencies and to

study the change in the surface current density as a func-
,.

of frequency.uon
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