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Rigorous Full-Wave Space-Domain Solution
for Dispersive Microstrip Lines

NIELS FACHE anp DANIEL DE ZUTTER

Abstract —The eigenmode problem for the open microstrip line is
analyzed in the space domain starting from the calculation of a dyadic
Green’s function in the spectral domain, The transverse and the longitudi-
nal current are discretized using the method of moments. A point-matching
technique is used to impose the boundary condition, i.e., zero tangential
electric field, on the strip. The edge conditions at the end points of the
strip are explicitly incorporated and special care is taken to accurately
retain the static behavior of the fields on and near the strip. Special
attention is devoted to the variation of the current distribution as a
function of frequency.

I. INTRODUCTION

HE DISPERSION characteristics and the (lowest)

eigenmode(s) propagating along an open microstrip
line have been analyzed by a large number of authors. We
refer the reader to [1]-{10] for a review of the various
approaches and results. The spectral-domain approach
proposed in [1] and [2] was recently applied by Kobayashi
and Ando [6] to determine the frequency dependence of
the effective dielectric constant starting from a closed-form
expression for the transverse and the longitudinal current
distribution on the strip. These expressions take the edge
conditions into account.

In the spectral-domain approach proposed by [1], the
boundary conditions on the strip, i.e., the vanishing
tangential electric and normal magnetic field, are only
satisfied at a single point at the center of the strip. In more
recent publications using the spectral-domain approach
[2]-[10], either a more accurate closed-form representation
of the current or a representation of the current using a
larger number of basis functions is introduced. In these
cases the boundary conditions are imposed in some global
sense.

In the present paper a full-wave solution is proposed in
the space domain starting from the calculation of a dyadic
Green’s function in the spectral domain. Both the trans-
verse and the longitudinal current are discretized using the
method of moments in such a way that the edge conditions
are satisfied. The boundary conditions on the strip are no
longer imposed in a global sense but at a number of points
equally spaced along the strip. In addition, by explicitly
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satisfying the boundary conditions at the end points of the
strip, the static behavior of the fields on and near the strip
is accurately retained in our approach. As we do not start
from a closed-form expression of the current on the strip,
as in [6], it becomes possible to examine the influence of
the frequency on the current distribution. Another consid-
erable advantage of the proposed method is the fact that it
can be extended to study the coupling between two or
more microstrip lines. As the dyadic Green’s function is
found in the spectral domain, the method is suited to
coupling between lines in the same horizontal plane, as
well as to lines at. different depths in a multilayered
structure. In the latter case it is essential to include enough
degrees of freedom in the representation of the current
distribution.

II. GENERAL FORMULATION

The structure under consideration is shown in Fig. 1.
The ground plane at z = 0 is perfectly conducting and the
microstrip substrate (medium 1) with thickness d consists
of a lossless, nonmagnetic material with relative permittiv-
ity €,. The strip is infinitely thin and perfectly conducting,
with width 2w (—w < y € +w). The medium above the
strip is air (medium 2).

As we want to determine the lowest eigenmode propa-
gating along the microstrip line, all field components de-
pend upon x through the common phase factor
exp (— jBx), where B represents the propagation constant
of the eigenmode. The time dependence exp(jwt) is sup-
pressed. For the calculation of the electromagnetic fields
excited by the eigenmode, we start from the surface cur-
rent density on the strip:

Je(x, y) =T (y)e
J(x,y) =T (y)e

The electric field generated by these surface currents eve-
rywhere in space can be found with the help of a suitable

Green’s dyadic G:
E(y.2)= [ Gy.zy,2=d,B)-d(y)d'. ()

The actual electric field is e = exp(— jBx)E. The coordi-
nates z and y are the coordinates of an observation point
outside the strip and y’ stands for the coordinate of a
variable integration point along the strip. As the surface
current density J is as yet unknown, J can be found by

M

—wL<y<+w.
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Fig. 1. Perfectly conducting microstrip line on a dielectric substrate.

expressing the fact that the tangential component of the
electric field E given by (2) must vanish on the strip itself.
This leads to the following integral equation:

lim [* G(y,25,2'=d,8)-I(Y) &' =0 (3)

The observation point is now restricted to the strip, where

z—d and —~w<y<+w. G, represents this part of G
which yields the tangential x and y components of E. The
above integral equation constitutes an eigenvalue problem.
The propagation constant 8 is the eigenvalue of the prob-
lem and the current on the strip forms the associated
eigenvector. The kernel 6, depends upon the eigenvalue f3.
As will be shown below, it is essential to retain the limit
z = d. A mere interchange of this limit with the integration
over y’ is not always allowed.

[II. DISCRETIZATION OF THE SURFACE CURRENT

For the solution of (3) we use the method of moments
combined with a point-matching technique. The strip is
divided into N identical intervals with width A (see Fig.
2). The modeling in the intervals 2 to N —1 is based on a
superposition of elementary triangular functions which
extend over two intervals. This leads to a piecewise-linear
representation of both the longitudinal and the transverse
current. In the outermost intervals 1 and N, our represen-
tation explicitly accounts for the behavior of the electro-
magnetic fields near the edges. This behavior has been
analyzed by Meixner [11] and imposes the following form
for the longitudinal current:

Jo=Ar" V24 Brl/2 4+ €232+ 0(15/2)

€
where 7 represents the distance to the edge. This compo-

nent of the current becomes infinite at the edge. The
transversal component remains finite:

J, =Bt/ + C'r32 4 0(152). (5)

In our discretization of the current we restrict the series
(4) to the first three terms and the series (5) to the first two
terms. To ensure continuity of the current along the strip
and to incorporate the behavior near the edges, the current
representation in the intervals 1 and 2 is supplemented by
the superposition of the modified triangular functions
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Fig. 2. Longitudinal current J, and transversal current jJ, as a super-
position of elementary basis functions.

t(y), t,(»), and t;(y) for the longitudinal component
and ¢,(y) and #;(y) for the transverse component:

h(r) = (a/7)”
(r) = (1/8)

13(r) = (1/8)"" (6)

forO<7<A and

h(r)=t(1) =t3(7) = 24 -1)/A
for A <7 <2A, where 7 =w — | y| at both edges.

An analogous approach is implemented near the other
edge. Fig. 2 shows the basis functions and their superposi-
tion for the longitudinal current J (y) at the left-hand
part of the figure and for the transverse current J,(y) at
the right hand. As shown below, both components are in
quadrature. The total number of scalar unknowns intro-
duced in the way outlined above is 2N +4. To determine
these unknowns we require the integral equation (3) to be
satisfied in N +2 points. These N +2 sample points are
chosen to be in the center of each interval and at the edges
of the strip.

The above approach allows us to reduce the original
integral equation to the discrete matrix problem:

[4][7]=[0]. (7)
The square matrix [4] has 2N +4)X(2N +4) elements
and the column vector [J] contains the unknowns which
model the surface current. The eigenmode calculation is
now reduced to the determination of the eigenvalue 8 for
which det[ 4] becomes zero. The corresponding eigenvec-
tor [J] is found by satisfying the 2N +4 linear equations
in (7) using a least-squares technique.

IV. GREEN’S DYADIC IN THE FOURIER DOMAIN

As a first step we introduce the Fourier transformation
of all fields with respect to the y coordinate. The Fourier
transformation and its inverse are defined as follows:

F(k,) = (1/27) f H)exp (i, ) dy
f(¥)= / (8)

As there is no danger for confusion, we have not intro-
duced a special symbol to indicate the Fourier transforma-

,)exp (— Jk, y) dk .
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tion. A function and its transformation are only dis-
tinguished by their arguments. It is easy to see from
Maxwell’s equations that the transformed fields in medium
1 and 2 satisfy

— —-TE=0
dz?
d2
?—'FzH:O (9)

with T?=8%+k; —kiN? Here k,=w/c is the wave-
number, N = \/e_ for medlum 1, and N =1 for medium 2.
T itself is defined as the root of I'* with nonnegative real
or imaginary part. The general solution of (9) is given by

E(z, y,,B) Aexp(—Tz)+ Bexp(Iz)

H(z,k,,B)=Kexp(—Tz)+Lexp(Tz). (10)

The vectors K and L are not independent of 4 and B.
The relation between them will be established below.

As a second and essential step we introduce the projec-
tion of every vector on three orthogonal directions. An
arbitrary vector W is characterized by the three numbers
W, W', and W” as follows:

W=Wu,+ [Wk+W(u,xk)| /(B> +k2)
k=pBu,+ku, and k= ,82~i—k2

(11)

It is clear that the corresponding values E’, E”, E,, H',
H”, and H, are of the form (10) but with the vectors
replaced by scalars. With the notation introduced above,
Maxwell’s divergence equations reduce to dE,/dz= JE'
and to dH,/dz = jH'. The rotor equations projected on
the z axis yield the relations E”=wpy H, and H'=
— weye, E,. Taking the above results and considerations
into account, we finally arrive at the following representa-
tion of the fields in each layer:

E'(z,k,,B) = A'exp(—Tz)+ B’exp(Iz)

HY(2, k. B) = (o, /T) [ Arexp(~ Tz)— B'exp(T2)]

E/(z,k,,B)=(—j/T)[Aexp(~Tz)~ B’ exp (Tz)]
(12)

and
E"(z,k,,B)=A"exp(~Tz)+ B"exp(Iz)
H'(z,k,, B) = [T/(= joro)]

-[4”exp(—Tz)— B”exp(Tz)]
H(z,k,.B)= (l/wpo)[A”exp( Iz)+ B”exp(I2)].

(13)

As shown by (12) and (13), this representation of the fields
falls apart into two sets of decoupled equations: one set
for E’, H”, and E, and a second set for E”, H’, and H,.
The first set is a TM mode as the z component of the
magnetic field is zero. The second set is a TE mode. The
couples (E’, H”) and (E”,H’) can be used to define
equivalent voltage and current across a transmission line.
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The constants A4’, B” and A”, B” must be determined by
applying the boundary conditions between the layers of
the medium. The continuity of the tangential electric field
between substrate and air leads to
E/-E;=0
Elll___E2H=0 (14)
The tangential magnetic field exhibits a jump at the strip.
The appropriate boundary condition is
H{—H}=-J"(k,)

Hy—Hy'=+J(k,)

forz=d.

forz=d (15)
where J(k,)=J (k )u,+ J(k,)u, represents the Four-
ier-transformed surface current density J(y) (3). Ad-
ditional boundary conditions are given by the fact that E’
and E” are zero at the perfectly conducting ground plane,
i.e, for z=0; hence 4{+ B{=0 and A{'+ B{'=0. Fi-
nally, in medium 2, only outgoing waves can exist. This
implies B =0 and B} = 0. After some manipulations we
arrive at the following result for é,(ky, z) (3) for an
arbitrarily oriented surface current element located at y =

’

y"
Gpxx = (@B + bk2)exp[ - Ty(z — d)] exp (jk,y’") /K>
G, =G

txy tyx

=(a—b)k Bexp[—T,(z—d)]exp(Jjk,y")/k*

G,,= (ak2+b,B )exp[ L,(z—d)] exp(jk,y")/k>
(16)
with
— I L, sinh (I'}d)
 jwe, [Ty sinh (Tyd) + ¢, Tycosh (Tyd )]
— jwpasinh (T, d
b= : JWho ( ] ) . (17)
[T, sinh (T,d)+ T cosh (T;d)]

I, and T, are defined in (9). Strictly speaking, (16) and
(17) are only valid for z > d. For the integral equation (3)
we actually need the limit z — 4 in (16).

V. GREEN’S DYADIC IN THE SPACE DOMAIN

To find G,(y, z) in the space domain, the inverse Four-

ier transformations of the elements of @(ky, z) in (16)
must be determined. This calculation reduces to the de-
termination of six Fourier integrals which can be takcn
together into two classes:

+oo T,k exp [~ Ty (2 — d) — jk, 8]
(J/“‘O)f o [Iy+e€Tycoth(Tyd)](B%+k )dky (18)
and

e kiexp|-T(z—-d)— jk 3]
—J“’”‘)[_w [T, + Tycoth (Tyd)] (82 + k2)

The notation 8 = y — y’ stands for the distance between
the observation point and the source point on the strip.

dk,. (19)
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The superscript i, indicating a power of k,, takes the
values 0, 1, and 2. From (16) and (17) it can be seen that
,xx(k ) and G,yv(ky) are even with respect to k, while

G (k)= G,yx(k ) 18 odd and that the coefficients a and
b (17) take an imaginary value. Consequently G, .(y — »’)
and G, (y — »’) are even with respect to 8, and G, ,(y —

y)is odd while J (y) will be even with respect to y and
J, will be odd. Moreover, J, (y) and J,(y) are in quadra-
ture.

At this point it is justified to interchange the limit z — d
with the integration over y’ in (3) on the explicit condition
that the above integrals (18) and (19) remain bounded for
z=d. This is not the case when the source and the
observation point coincide, i.e., for § =0 or y = y’. The
approach followed in that particular case, i.e., for the
self-patch calculations, is discussed in the next section. In
the present section we now assume z =4 in (16), (18), and
(19).

The integrals (18) and (19) for i=1,2 can be derived
from those for i =0 by taking, respectively, the first and
second derivative with respect to 8. Hence, the discussion
will be restricted to the case i=0. Fig. 3 shows the
integration path along the real k, axis. The poles are
excluded in such a way as to satisfy the appropriate
causality conditions [12]. As indicated on Fig. 3, the in-
tegration path from —oo to +oo is divided into three
intervals: [—o0, — k], [~ k,, + k], and [+ k_, + oo]. The
value of k,. is chosen such that I', and I’, can be ap-
proximated by |k,| while 8% + k can be replaced by k7 in
the first and third intervals. Th1s implies that the contrlbu-
tions to (18) and (19) coming from [— oo, — k] and from
[+ &, o0] can be taken together. The contribution to (18)
fori=0and z=d is

—4je, +o exp(—2k,d— jk,8)

weg(1+¢,) fk [1+ Kexp(—2k,d)|k,
2j +oo cos( k)

dic

* weg(l+e,) / k, 4

where K = (¢,—1)/(¢,+1). The contribution to (19) for
i=0 and z=d becomes

+ 00 cos(k 3)
-jwuofk —F—y—-[l—exp(—Zk}d)] dk
¢ y

dk,

(20)

L. (1)
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A typical value for k, is 10X k, X €,. The integrations in
(20) and (21) no longer depend upon B. Hence, in spite of
the iterative method used to determine the value of 8
which satisfies det[A]=0 in (7), the integrations involved
in that iterative process stemming from (20) and (21) must
be performed only once. This is a considerable advantage
of the proposed method. The contribution (21) can be
found analytically. The result is

~ (Jomo/2k2)([cos(k 8)— k Ssin(k5)
+ (k8 ci(k )]
~[cos(k 8) =2k dcos(kS)
— k Ssin(k )] exp(—2k.d))
+ jopo/2Re[(—2d + j8) E,(2k.d — jk 5)]
(22)

where ci denotes the cosine integral and E; the exponen-
tial integral [13]. The contribution (20) has been written as
the sum of two integrals in such a way that the second
integral contains the dominant behavior for y — y’ (8 - 0).
This second integral can be found analytically:

~ j2¢i(|kd))/[weo(1+¢,)]. (23)
Consequently, the first class of integrals (18) has a loga-
rithmic singularity In|y — y’| for i=0. This implies a
1/|y — y’| singularity for i=1and a 1/|y — y"|? singular-
ity for i = 2. The second class (19) only exhibits a logarith-
mic singularity for i = 2.

The first integral in (20) must be calculated numerically.
Because of strong oscillation of the integrand, the integra-
tion path is deformed to a suitable straight line in the
complex k, plane as shown on the right of Fig. 3:

k, =7+ j(r—k.)8/(2d), (24)

The angle « on Fig. 3 is defined by tan(a)=46,/2d. The
path is chosen such that the phase factor exp(—2k,d +
Jk ,0) in the integrand decays exponentially along the path,
reducing most of the oscillation of that integrand along the
original path. The actual numerical integration is based on
the Gauss—Laguerre quadrature.

Finally, we have to deal with the integrals over the
interval [~ k_, + k_]. Due to the resonant modes of the
structure, the integrands for the first class of integrals (18)
exhibit a finite number of poles in this interval. As medium
1 and medium 2 are both nonmagnetic, this is not the case
for the second class (19). The poles are indicated on Fig. 3
together with the branch cuts necessary to define the
values of I'; and I',. To avoid the singularities, the.original
integration path [—k_, + k] along the real k, axis is
replaced by a new one consisting of a straight line through
the origin together with two arcs (see Fig. 3). The angle 6,
which in principle takes an arbitrary value, is chosen such
that the amplitude variation of the integrand remains small
enough to ensure the accuracy of the numerical integra-
tion. The integration from -k, to +k_ for the second
class (19) takes place along the real axis. In both cases

k., <T<o0.
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simple Gaussian quadrature is used except when ¢/
¥ fw‘/e_,_ ) <1 (c: velocity of light in vacuum, f: frequency).
In the latter case a Filon quadrature is more appropriate.

For sufficiently low frequencies the exponential factor
exp(— jk,8) in the integrals over [—k, +k.] can be
expanded in a power series in k8. As a consequence of
this expansion the integrals we are searching for can be
approximated by polynomials in 8, the coefficients of
which are integrals which still depend on 8 but not on 8.
As we need these integrals for a whole range of .§ values,
this approach considerably reduces the calculation effort.
In the example considered in the section on numerical
results, the series expansion approach yields correct results
up to 100 MHz.

V1. SELF-PATCH CONTRIBUTION

If we consider a specific point-matching point y, the
self-patch contribution to (3) is the contribution coming
from the integration over the interval A to which y be-
longs. In that particular case interchanging the limit z —» d
i (3) with the integration over y’ is not allowed as it leads
to divergent results. At this point we will not go into the
details of the calculations. The approach that must be
followed will be illustrated by determining the self-patch
contributions for the point-matching point y placed at one
of the edges of the strip. We start from (18) and (19) but
retain the limit z — d in the integration over [ — o0, — k]
and [+ k_, 00]. One can show that this is not necessary for
the integration over [— k_, + k] as the integrand has a
regular behavior for z = d. Hence, this part of the contri-
bution can be treated as explained in the preceding sec-
tion. Self-patch contributions to the matrix [A} in (7) for

y=—w and coming from the integration of G,,,J, and of
G,,,J, in (3) remain finite if z — d. We focus our attention

on those contributions which become infinite. The nonreg-
ular behavior of the integral in the left-hand member of (3)
for z — d and for y = — w comes from

3 - +A 4 I4 4
lim " [thx(y=—W’Z; Y,z =d’B)Jx(y)

z—=dJ—w

+ Gy (y=—w,z5 ¥, 2 =d.B)J,(»)] & (25)

The current J, is built up as a superposition of functions
proportional to #,, ¢,, and #; (6), and J, is built up as a
superposition of functions proportional to ¢, and #;. A
detailed analysis shows that the nonregularity comes only
from ¢, in the case of J, and from ¢, in the case of J,.
From (16) it can be seen that G, and G,,, consist of two
parts: a first part proportional to the coefficient a (17)
being the TM part, and a second part proportional to the
coefficient b (17) being the TE part. Only the TM part is
responsible for the nonregularity in (25). This is due to the
fact that the TM part of G,,, becomes a nonzero constant
for k, — co and that the TM part of G,,, is proportional
to k y for large values of &, while the TE part vanishes as
1/k; in the case of G,,, and as 1/k; in the case of G,,,,.
In the sequel we disregard the TE contributions. The first
term in (25) for J, = At; and for the TM part of G, leads

tyx

735
to
lim fAA(y’)—l/zdyff+a>—jﬂxsin(k y')
z—dJQ k, ¢
-exp(—ky|z —dJ) dk,
- jn,BA( lim [271/%]z - d|~12]
—2cos(k,A)(A) 7
—2(27rkc)1/2S(kCA)) (26)

while the second one for J, = B’t, and for the TM part of
G,,, gives

S LIV VI ,

lim fo B'(y)"* dy fk (=)xk,cos(k,y’)

z—d

-exp (— k |z —d|) dk,
=— nB’( limd[— 7273z —d| V7]

+2cos(kcA)(A)'1/2+(‘Zwkc)mS(kcA)). (57)

In both (26) and.(27) S(k_ A) represents the Fresnel sine
integral of argument k A [13]. The coefficients x in (26)
and (27) is given by k =2/[ jwey(1+ ¢,)]. The coefficient
A in (26) is the same as in (4). As w—0, 4 remains
constant and the ratio 8/w in Bk takes a constant nonzero
value. On the other hand, B’ in (27) is the same as in (5).
As w—0, B’ must also vanish because no transversal
current is found on the strip for w =0. However, the
product kB’ in (27) takes a constant nonzero value for
w — 0. The above considerations show that the self-patch
contributions in (26) and (27) still differ from zero for
w = 0 and that their correct evaluation leads to the correct
static behavior of the lowest eigenmode and associated
eigenvalue 8. Although the tangential electric field is zero
everywhere on the strip, i.e., for z = d, this is not the case
just below or just above the. strip. Both the longitudinal
current and the transversal current give rise to an electric
field component which in fact becomes infinite just above
the edges of the strip as required by Meixner’s edge
condition. For the actual self-patch contributions the terms
in |z—d|"'? in (26) and (27) must be dropped. These
nonregular parts correspond to the static field in the
neighborhood of the edge of the strip. The remaining
contributions are regular.

VIL

The main interest of this paper lies in the presentation
of a new approach for the solution of the eigenproblem for
the microstrip line. Consequently, we restrict the numerical
results presented in this section to-a typical configuration
which can be found in several publications [1]—[3], [6]. In
this configuration the relevant parameters take the values
2w =3.04 mm, d =3.17 mm, and ¢, =11.7. Fig. 4 shows
the value of the effective dielectric constant (€,) 4=
(B/k)? as a function of frequency f = w /27 and this up
to 15 GHz. We have compared this result with the one

NUMERICAL RESULTS



736 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 4, APRIL 1988

n T €plorr

10

T(GHz)
e Jases sume |

0 5 10 15

Fig. 4. Effective dielectric constant as a function of frequency for the
configuration of Fig. 1 with 2w =3.04 mm, d = 3.17 mm, and ¢, =11.7.
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Fig. 5. Longitudinal current J, at 1 GHz and 13 GHz, relevant to the

example of Fig. 1.

obtained by Kobayashi er /. [6] with the spectral-domain
method based on an a priori form of the longitudinal and
the transverse current. Both results differ less than 1
percent up to 10 GHz, which is the highest frequency
considered in [6]. The reader is referred to the paper by
Kobayashi et al. for a detailed comparison of their results
with the ones obtained by other authors. The numerical
results shown in Fig. 4 (with an accuracy of 0.1 percent)
were obtained by a division of the strip into 10 intervals.

The longitudinal current and the transversal current on
the strip are shown in Figs. 5 and 6, respectively. As the
longitudinal current is symmetric with respect to the center
of the strip and as the transversal current is antisymmetric,

107%/m

o4

136Hz

T L
-W -w/2 0

Fig. 6. Transversal current jJ, at 1 GHz, 7 GHz, and 13 GHz relevant
to the example of Fig. 1.

we display only the results for the left half of the strip. The
transverse current increases with increasing frequency.
However, at 13 GHz it still remains two orders of magni-
tude smaller than the longitudinal current. J, and J, are
in quadrature. As the amplitude of the transverse current
changes more rapidly as a function of frequency than the
longitudinal current, J, is plotted for three different fre-
quencies while J_ is depicted for only two frequencies. The
total longitudinal current, i.e., the integral of J, over the
width of the strip, is kept constant for each frequency. The
result for 13 GHz in Fig. 5 shows a kind of skin effect. As
the frequency increases, the longitudinal current tends to
be constant over a larger portion of the strip, as would be
the case for an infinite strip, and the singular behavior
becomes more and more restricted to the immediate
neighborhood of the edges. The results of Figs. 5 and 6
clearly exhibit the ability of our method to allow for a
variation of the current profile as a function of frequency.

The dispersion characteristic of Fig. 4 changes only
marginally if the number of divisions on the strip is
increased beyond 10. For the current profiles, however, at
least 30 divisions are necessary to obtain a converging
result.

VIII.

We have shown that a rigorous full-wave space-domain
solution for a dispersive microstrip line offers an alterna-
tive to the spectral-domain method. This solution also
starts from the spectral domain for the calculation of an
appropriate dyadic Green’s function. Explicit inversion of
this Green’s dyadic leads to the Green’s dyadic in the
space domain. This dyadic is used as the kernel of an
integral equation for the vanishing tangential electric field
on the strip. The integral equation itself was solved using
the method of moments and a point-matching technique.
The analysis of the problem shows that it is possible to
incorporate Meixner’s edge conditions at the end points of
the strip. Moreover, it is shown that by incorporating these
edge conditions and by explicitly satisfying the integral
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equation at the end points, the correct low-frequency and
static behavior of all field quantities is ensured. A consid-
erable advantage of the method lies in the fact that no
prior knowledge. of the current density on the strip is
necessary. This makes the method suitable for analyzing
multistrip configurations. The analysis and numerical data
concerning multilayered and/or multistrip configurations
will be presented in a forthcoming paper. The numerical
results given in-this-paper illustrate the capability of the
method to calculate the dispersion characteristics of a
single microstrip line up to very high frequencies and to
study the change in the surface current density as a func-
tion of frequency
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